Rechercher dans le site  |   Devenir membre
      Accueil       |      Forum     |    Livre D'or      |     Newsletter      |      Contactez-nous    |                                                                                                          Envoyer par mail  |   Imprimer








loading...

 
Radiologie
Explorations radio-isotopiques de la thyroïde
Cours de Radiologie
 

 

 

Introduction :

L’exploration de la thyroïde est fonctionnelle et morphologique. Les premiers dosages étaient radio-immunologiques.

Plus récemment sont apparues l’immunoenzymologie, l’immunochimi-luminescence et l’immunofluorescence ; la radio-immunologie reste la méthode de référence.

Sur le plan morphologique, l’échographie est passée au premier plan du fait de son excellente résolution ; elle ne donne cependant que peu d’information d’ordre fonctionnel.

loading...

La scintigraphie reste indispensable à la classification des nodules et des goitres, et au diagnostic étiologique des dysthyroïdies.

L’exploration isotopique de la thyroïde est donc toujours d’un grand intérêt.

Bases physiologiques :

A - HORMONOGENÈSE THYROÏDIENNE :

Les deux principales hormones thyroïdiennes sont la 3,5,3’,5’ tétraiodothyronine ou thyroxine (T4) et la 3,5,3’ tri-iodothyronine (T3).

L’hormonogenèse dans le thyréocyte comporte la captation de l’iodure, son organification sous forme de mono- et di-iodotyrosine (MIT et DIT), le couplage des MIT et DIT en T3 et en T4 au sein de la thyroglobuline (Tg), le stockage de la Tg dans la colloïde, la protéolyse de la Tg, la libération des hormones thyroïdiennes dans la circulation, leur transport, sous forme liée à des protéines vectrices, dont la principale est la thyroxin binding globulin (TBG).

La T4 du sang provient de la sécrétion thyroïdienne.

La T3 vient en faible partie de la sécrétion thyroïdienne, mais surtout de la désiodation périphérique de la T4.

On trouve, dans le sang, d’autres produits du catabolisme de la T4, tels que la 3,3’ 5’ iodothyronine (reverse T3), inactive, ainsi qu’un peu de Tg.

La T4 et la T3 circulent principalement sous forme liée à des protéines de transport.

L’iodure I– est d’origine alimentaire (environ 80 ug/j en France).

II est soit utilisé par la thyroïde (clairance thyroïdienne de 15 à 20 mL/min en France), soit éliminé par voie rénale (clairance de 30 mL/min environ).

Dans la thyroïde se trouvent aussi les cellules parafolliculaires ou cellules C, qui sécrètent la calcitonine.

B - RÉGULATION DE L’HORMONOGENÈSE :

L’hypothalamus sécrète la thyrotropin releasing hormone (TRH) ou thyrolibérine.

La TRH arrive dans l’hypophyse par la circulation porte et y stimule la synthèse et la sécrétion de la thyroid stimulating hormone (TSH) ou hormone thyréotrope.

Un rétrocontrôle entre les concentrations de T4 et de T3 et la sécrétion de TSH se fait dans l’hypophyse.

Examens in vitro appréciant la fonction thyroïdienne : dosages radio-immunologiques

Ils dominent encore actuellement l’exploration thyroïdienne.

A - PRINCIPE :

Le principe général de ces dosages consiste à :

– rendre antigénique la molécule à doser ;

– obtenir une liaison antigène-anticorps (mono- ou polyclonal) ;

– marquer l’antigène ou l’anticorps ;

– étudier l’équilibre entre molécules liées et libres, marquées et non marquées, et en déduire la concentration de la molécule à doser.

Dans les dosages radio-immunologiques (RIA), le marqueur est radioactif.

La liaison antigène-anticorps se fait sur un nombre de sites limité (méthode par compétition), ou sur un nombre de sites illimité (méthode radio-immunométrique [IRMA]).

L’IRMA a une sensibilité supérieure à la RIA. D’autres méthodes, fondées sur des réactions immunologiques non isotopiques ont été proposées.

Parmi les plus importantes :

– l’immunoenzymologie : le marqueur est une enzyme ;

– la chimiluminescence : un anticorps monoclonal est marqué par un ester d’acridinium luminescent ;

– l’enzymochimiluminescence : l’hormone est en compétition avec de l’hormone marquée par de la peroxydase ; l’oxydation de luminol par la peroxydase s’accompagne d’une émission lumineuse ;

– l’immunofluorescence : de l’europium fixé sur l’anticorps, et excité par une lumière déterminée, émet un rayonnement de fluorescence.

Ces méthodes ne nécessitent pas de manipulation d’isotopes radioactifs et sont d’utilisation facile, utilisables par tous ; certaines sont plus précises que les méthodes isotopiques.

Cependant, elles nécessitent de multiples appareils ; aucune ne permet la réalisation de l’ensemble du bilan thyroïdien.

Par ailleurs, leur multiplicité ellemême rend plus difficile le contrôle de qualité.

Les dosages radioimmunologiques restent donc la méthode de référence.

B - BILAN THYROÏDIEN :

Il comporte schématiquement quatre parties :

– le bilan fonctionnel avec le dosage de la TSH et des fractions libres des hormones thyroïdiennes T3 et T4 ;

– le bilan immunologique (anticorps antithyroïdiens et antirécepteurs de la TSH) ;

– le bilan effectué dans les cancers thyroïdiens (thyroglobuline et calcitonine) ;

– le bilan iodé (iode sérique total et iode urinaire), très important dans l’exploration thyroïdienne, relève de méthodes de dosages chimiques et non radio-isotopiques.

1- Bilan fonctionnel :

* T3 et T4 libres :

Seule la T4 est le reflet direct de la fonction thyroïdienne.

En effet, la T3 provient en majorité de la désiodation périphérique de la T4.

Certaines pathologies non thyroïdiennes, en perturbant cette désiodation, entraînent des modifications de la concentration de la T3.

La fraction libre de la T3 et de la T4 est très faible (de l’ordre de 0,03 % pour la T4 et de 0,3 % pour la T3).

L’équilibre entre fraction liée et fraction libre des hormones thyroïdiennes peut varier lorsque les protéines vectrices sont qualitativement ou quantitativement anormales, dans certaines pathologies non thyroïdiennes (en particulier rénales), ou bien du fait d’interférences avec des médicaments ou des anticorps antihormones.

Diverses techniques de mesure des hormones libres se sont développées.

Aucune de ces techniques n’est parfaitement fiable.

* « Thyroid stimulating hormone » :

Le dosage de la TSH (dit ultrasensible ou de 2e génération) repose sur l’utilisation de deux anticorps monoclonaux qui permettent d’obtenir un dosage immunométrique très spécifique (notamment vis-à-vis d’autres hormones hypophysaires qui ont en commun avec la TSH la sous-unité alpha) et une limite de détection très basse, qui permet de distinguer les valeurs normales des valeurs abaissées de l’hyperthyroïdie.

Le dosage de TSH dit de 3e génération, est encore plus sensible que le dosage ultrasensible.

* Test à la « thyrotropin releasing hormone » :

L’injection intraveineuse de TRH provoque normalement une élévation de la TSH sérique, avec un maximum vers 30 minutes, et un retour à la valeur de base en 2 heures.

Le test à la TRH est parfois indiqué en pathologie hypothalamohypophysaire.

2- Bilan immunologique :

On dose en routine les anticorps antithyroïdiens (antithyroglobuline, antimicrosomes et antiperoxydase) ainsi que les anticorps antirécepteurs de la TSH.

* Anticorps antithyroïdiens :

Leurs titres étaient estimés auparavant par hémagglutination passive.

Ils sont maintenant dosés par des immunodosages.

Le principal antigène contenu dans les microsomes, la peroxydase est à l’origine du dosage des anticorps antiperoxydase.

Les résultats ne sont pas bien standardisés, d’autant que les anticorps polyclonaux circulants diffèrent selon les individus.

* Anticorps antirécepteurs de la « thyroid stimulating hormone » :

Le dosage en routine des anticorps dirigés contre le récepteur de la TSH ne met en évidence que la liaison au récepteur.

Il est impossible, avec cette technique, de distinguer les anticorps bloquants des anticorps stimulants (ces deux types d’anticorps peuvent être présents au cours de la maladie de Basedow).

3- Bilan des cancers thyroïdiens :

Deux paramètres sont effectués dans le suivi et le dépistage des cancers thyroïdiens : la thyroglobuline et la calcitonine.

* Thyroglobuline (Tg) :

La thyroglobuline est utilisée dans la surveillance de l’évolution des cancers thyroïdiens différenciés.

Le dépistage du cancer ne peut pas être effectué avec ce paramètre qui est un marqueur de la présence de tissu thyroïdien, normal ou pathologique.

Dans les pathologies thyroïdiennes bénignes, elle a un intérêt surtout dans le diagnostic de thyrotoxicose factice (ingestion d’hormones thyroïdiennes) et dans les anomalies congénitales de synthèse de la thyroglobuline.

Malgré de nombreuses avancées technologiques, ce dosage reste difficile.

La nécessité d’avoir une bonne limite de détection, une bonne reproductibilité dans les valeurs basses et surtout la présence éventuelle d’anticorps antithyroglobuline circulants qui peuvent interférer dans le dosage ne permet pas encore d’avoir toutes les informations attendues.

La présence d’anticorps anti-Tg entraîne en général une erreur par défaut de la Tg dosée par méthode IRMA, ce qui est très gênant dans la surveillance des cancers thyroïdiens différenciés.

Le test de récupération permet en partie de déceler cette interférence.

Il consiste à ajouter une quantité connue de thyroglobuline au sérum du patient et à vérifier le résultat du dosage de cette thyroglobuline.

* Thyrocalcitonine :

La calcitonine est un marqueur du cancer médullaire et est utilisée dans le dépistage et le suivi de ce cancer.

Ce dosage est difficile tant sur le plan technique que dans son interprétation.

Il s’effectue soit isolément, soit après stimulation par la pentagastrine, test dont la réponse est amplifiée chez les porteurs de cancer médullaire.

Dans le dosage de base, l’existence de formes circulantes variables de la calcitonine modifie l’immunoréactivité.

Des valeurs marginales sont observées dans différentes situations (insuffisance rénale, fumeurs) ou dans des pathologies thyroïdiennes en dehors du cancer médullaire.

L’interprétation est donc complexe.

Dans le test à la pentagastrine, un pic peu élevé est difficile à interpréter.

4- Dosages divers :

* Reverse T3 (rt3) :

Dans diverses circonstances, la désiodation de la T4 se fait vers la rT3, plutôt que vers la T3, et le taux de rT3 sérique s’élève.

* « Thyroxin binding globuline » (TBG) :

Le taux de TBG s’élève principalement au cours de la grossesse et chez les femmes prenant une oestrogénothérapie.

C - RÉSULTATS :

1- Valeurs normales :

Leurs limites varient selon les techniques et les laboratoires.

Les valeurs suivantes sont donc données à titre d’indication : T4 libre : 9,5 à 25 pmol/L (7,4 à 19,4 ng/L). T3 libre : 3 à 9 pmol/L (2 à 6 ng/L). TSH : 0,2 à 4 mU/L.

Test à la TRH.

La valeur maximale est obtenue normalement à 20 ou 30 min.

Les résultats sont exprimés en valeur brute d’ascension, normalement estimée entre 2 et 25 mU/L, ou comme le rapport TSH max/TSH de base, le rapport normal étant estimé entre 2 et 10 avec les dosages classiques de TSH.

En cas d’hyperthyroïdie, l’élévation de la TSH ne se produit pas.

En cas d’hypothyroïdie d’origine basse, on obtient une réponse augmentée et prolongée.

Dans les hypothyroïdies d’origine hypothalamohypophysaire, la réponse est variable.

Anticorps antithyroglobuline et antimicrosomes.

Ils sont présents dans les dysthyroïdies auto-immunes.

Anticorps antirécepteurs de la TSH.

Le seuil de positivité dépend de la technique de dosage. Ils sont parfois absents au début d’une maladie de Basedow.

Lorsqu’ils sont présents, leur disparition au cours du traitement est habituelle, mais n’a pas de signification pronostique. Anticorps anti-T4 et anti-T3.

Ils sont retrouvés dans une faible partie de la population, et interfèrent avec les dosages de T4 et T3.

Thyroglobuline : environ 10 à 60 µg/L.

La Tg est indétectable après thyroïdectomie totale.

Des taux élevés retrouvés après thyroïdectomie totale chez des patients présentant un cancer thyroïdien différencié indiquent une récidive locale ou des métastases.

La Tg est également indétectable dans la thyrotoxicose « factice ».

Thyrocalcitonine (CT).

La référence est le dosage de CT mature par IRMA de CIS Bio international, France, dont on connaît les normes.

La CT de base normale est inférieure à 10 pg/mL.

Au cours du test à la pentagastrine (Pg), la réponse de la CT (pic moins taux de base) est inférieure à 30 pg/mL chez 96 % des adultes normaux, située entre 30 et 50 pg/mL chez 4 % des hommes adultes normaux.

Dans certaines pathologies thyroïdiennes, le test à la Pg peut être positif, avec en règle un pic de CT inférieur à 100 pg/mL. TBG chez les sujets normaux euthyroïdiens : 11 à 32 mg/L.

TBG au cours de la grossesse : 20 à 75 mg/L. rT3 : 300 à 500 ng/L.

2- Variations physiologiques :

* Nouveau-né :

À la naissance, la fonction thyroïdienne est mesurable dans le sang du cordon ; puis elle se modifie dans les minutes qui suivent la naissance, avec principalement un pic de TSH.

Les valeurs normales sont les suivantes :

– la TSH dans le cordon est d’environ 10 mU/L, puis s’élève et passe par un maximum (80 à 90 mU/L) à 30-60 min et revient à la normale vers j3-j4 (d’où la date du dépistage de l’hypothyroïdie, à j5) ;

– la concentration de T4 libre dans le cordon est semblable aux valeurs normales de l’adulte. Puis, sous l’influence du pic de TSH, elle s’élève environ d’un facteur 2 à 5, atteint un maximum vers 24 heures, et revient à la normale en 2 ou 3 semaines ;

– la concentration de T3 libre dans le cordon est plus basse que les valeurs normales de l’adulte ; puis elle s’élève, sous l’influence du pic de TSH et de la désiodation de T4, d’un facteur 4 à 6 environ, atteint un maximum vers 24 heures, et revient en quelques jours à une valeur supérieure aux valeurs normales de l’adulte.

* Enfant et adulte :

La T4 et la TSH se modifient peu avec l’âge.

En revanche, la T3 est plus élevée chez l’enfant, supérieure à la limite supérieure de la normale de l’adulte, et diminue progressivement avec l’âge, pour atteindre les valeurs normales chez l’adulte.

* Sujet âgé :

La T4 est normale, la TSH peut être abaissée (pour certains auteurs).

La T3 diminue progressivement pour atteindre des valeurs plus basses que les normales de l’adulte.

* Grossesse :

L’hyperoestrogénie augmente la synthèse hépatique des protéines de transport.

La synthèse hormonale doit augmenter. Par ailleurs, l’augmentation de l’excrétion urinaire d’iodure accentue la carence iodée. Le bilan thyroïdien est modifié de façon complexe.

* Nycthémère :

Les variations concernent surtout la TSH, qui présente un maximum entre 1 h et 2 h du matin.

3- Hyperthyroïdie :

Le diagnostic est fondé sur l’élévation de la T4 et de la T3 libres.

La TSH est effondrée, inférieure à 0,05 mU/L.

Dans certaines hyperthyroïdies, surtout l’adénome toxique, il y a une sécrétion préférentielle de T3, la T4 restant normale.

4- Hypothyroïdie :

Le diagnostic d’hypothyroïdie d’origine basse est fondé sur l’abaissement des hormones thyroïdiennes, T4 et T3 totales et libres, et sur l’élévation de la TSH.

Dans le doute, le test à la TRH montre une réponse anormalement élevée et prolongée de la TSH.

Nous n’abordons pas ici les hypothyroïdies d’origine hypothalamohypophysaire, acquises ou congénitales.

5- Bilans au cours des traitements à visée thyroïdienne :

Ils peuvent montrer d’apparentes dissociations.

Au début du traitement d’une hyperthyroïdie par antithyroïdiens de synthèse (ATS) :

– la concentration de TSH peut rester abaissée quelques semaines (par persistance de l’hyperthyroïdie ou par inertie hypophysaire) avec une T4 libre élevée, normale ou même abaissée ;

– la concentration de TSH peut être normale avec une T4 libre abaissée.

Au cours du traitement d’une hypothyroïdie par la T4 :

– en début de traitement, la TSH peut rester élevée alors que la T4 est normalisée ;

– la T4 libre peut être un peu élevée au cours d’une hormonothérapie thyroïdienne substitutive, surtout dans les 4 heures qui suivent la prise de L-T4.

À noter la possibilité d’une malabsorption de la thyroxine lors de la prise simultanée de certains médicaments.

6- Interférences au niveau des dosages :

Les interférences analytiques sont toujours possibles :

– anticorps dirigés contre l’un des constituants de la phase solide ou l’un des réactifs ;

– facteurs rhumatoïdes donnant des erreurs par excès dans le dosage de la TSH ;

– anticorps anti-T4 ou anti-T3, donnant des erreurs par excès dans les dosages des T4 et T3 ;

– anticorps anti-TSH ou antigammaglobulines de souris

– présence d’albumine anormale ayant une forte affinité pour les hormones thyroïdiennes ;

– réactions croisées en présence de molécules ayant des chaînes communes (exemple TSH et FSH, luteinizing hormone [LH], human chorionic gonadotrophin [hCG]) ;

– présence d’isomères (par exemple la DT4, isomère dextrogyre de la LT4, hormone naturelle).

Tous les coffrets commercialisés ne réagissent pas de façon identique à ces interférences.

7- Interactions avec des médicaments :

Certains médicaments peuvent interférer à différents niveaux :

– hypothalamohypophysaire par modification des récepteurs et de la sécrétion de TSH ;

– sérique par modification de la concentration ou de la liaison aux protéines vectrices ;

– périphérique par modification de la désiodation périphérique de T4 en T3.

8- Interactions avec des pathologies non thyroïdiennes :

Les protéines porteuses sont modifiées dans :

– les syndromes néphrotiques, par fuite des protéines porteuses ;

– les syndromes hépatiques, par diminution de la synthèse hépatique de la TBG ;

– certaines hépatites cytolytiques, par libération de TBG hépatique.

Les bilans faits précocement après une hémodialyse peuvent montrer une baisse concomitante de T3, T4 et TSH d’interprétation difficile.

Le bilan thyroïdien est modifié de façon variable dans les maladies psychiatriques.

9- Maladies graves non thyroïdiennes :

La diète, le jeûne, la dénutrition, les efforts physiques intenses entraînent une baisse de la T3 par modification de la conversion périphérique de la T4 vers la reverse T3 inactive.

Un abaissement isolé de la T3 se voit au cours des maladies graves non thyroïdiennes.

Au syndrome de basse T3 peut s’associer un syndrome de basse T4, chez des patients très gravement malades.

10- Bilans thyroïdiens dissociés :

Plusieurs situations sont possibles et sont issues de causes multiples.

* « Thyroid stimulating hormone » normale avec une T4 libre augmentée :

Elle peut se rencontrer dans :

– un traitement par la T4 ;

– un traitement par amiodarone ;

– les sécrétions inappropriées de TSH ou les syndromes de résistance hypophysaire (rares).

* « Thyroid stimulating hormone » normale avec une T4 libre diminuée :

Elle peut se rencontrer dans :

– un traitement par antithyroïdiens de synthèse ;

– un traitement par inducteur enzymatique (barbiturique, carbamazépine, hydantoïne) ;

– la grossesse aux 2e et 3e trimestres ;

– une hypothyroïdie d’origine centrale.

* « Thyroid stimulating hormone » augmentée avec une T4 libre augmentée :

Elle peut se rencontrer dans :

– une hypothyroïdie en début de traitement par la T4 ;

– les sécrétions inappropriées de TSH ou les syndromes de résistance hypophysaire (rares).

* « Thyroid stimulating hormone » augmentée avec une T4 libre normale :

Elle peut se rencontrer dans :

– une hypothyroïdie fruste non traitée lorsque la thyroïde stimulée peut assurer une production suffisante de T4 ;

– une hypothyroïdie en début de traitement par la T4 ;

– une résistance à la TSH.

* « Thyroid stimulating hormone » diminuée avec une T4 libre diminuée :

Elle peut se rencontrer dans :

– un traitement par la T3 (ou un dérivé de la T3) : dans ce cas, la T3 libre est augmentée ;

– un traitement par antithyroïdiens de synthèse ;

– une hypothyroïdie d’origine centrale (T3 libre normale ou abaissée).

* « Thyroid stimulating hormone » diminuée avec une T4 libre normale :

Elle peut se rencontrer dans :

– un traitement freinateur par la T4 ;

– un traitement par antithyroïdiens de synthèse ;

– une hyperthyroïdie autonome ;

– une maladie de Basedow sur thyroïde opérée ou traitée par irathérapie (situation avec peu de tissu thyroïdien stimulé en excès) ;

– un traitement par corticoïdes, dopamine et ses agonistes ;

– une dépression majeure ;

– la grossesse au 1er trimestre (rôle de l’hCG).

Examens isotopiques in vivo :

A - SCINTIGRAPHIE THYROÏDIENNE ET DU CORPS ENTIER :

1- Traceurs classiques :

La cellule thyroïdienne transporte de façon active non seulement l’iodure radioactif (comme l’iodure froid), mais également le pertechnétate 99mTcO4.

Trois traceurs sont communément utilisés : les iodes radioactifs 131 et 123, sous forme d’iodure, et le technétium (99mTc), sous forme de pertechnétate 99mTcO4.

Les critères de choix sont l’organification du traceur, l’irradiation et le coût.

Schématiquement, l’iode radioactif est organifié et entre dans l’hormonosynthèse thyroïdienne : il permet de faire la scintigraphie et la mesure de la fixation.

* Iode 131 :

C’est le plus anciennement utilisé et le plus irradiant, en raison de son rayonnement bêta. C’est ce rayonnement qui est efficace dans le traitement des hyperthyroïdies et des cancers thyroïdiens.

En diagnostic, le caractère assez pénétrant du rayonnement gamma de 364 keV et la demi-vie longue de l’iode 131 font qu’il est réservé à certains cas : étude dosimétrique avant traitement d’une hyperthyroïdie par l’iode 131, étude du corps entier dans les cancers thyroïdiens, scintigraphie des goitres plongeants intrathoraciques afin d’obtenir une image interprétable malgré l’absorption du rayonnement par la paroi thoracique.

* Iode 123 :

C’est le plus adéquat, car il irradie assez peu pour pouvoir être utilisé même chez le nouveau-né et l’enfant.

Produit de cyclotron, l’iode 123 a un coût assez élevé.

Sa période de 13 heures ne permet pas un stockage prolongé et il ne peut être utilisé que dans les centres situés à proximité du cyclotron.

La scintigraphie et la fixation sont le plus souvent réalisées précocement après injection intraveineuse ; un délai de 2 heures permet en règle d’obtenir un bon contraste scintigraphique.

Mais la scintigraphie peut également être réalisée à 24 heures quel que soit le mode d’administration.

* Pertechnétate 99mTcO4 :

C’est le moins cher et le moins irradiant : il est donc utilisable à tout âge (sauf bien sûr chez la femme enceinte).

Il n’est pas organifié, il ne permet donc pas d’explorer l’hormonogenèse, mais seulement le transport actif.

Il ne s’accumule pas dans la thyroglobuline, mais ressort de la cellule thyroïdienne.

Le contraste avec le 99mTcO4 est maximal environ 30 minutes après l’injection intraveineuse.

Même dans ce délai, le contraste est nettement moindre que celui qui est obtenu avec un iode radioactif.

Il n’a aucun avantage sur l’iode en cas de surcharge iodée.

On observe des dissociations entre la fixation de l’iode et celle du Tc04, essentiellement dans des lésions bénignes.

En pratique le Tc04 est utilisé en routine dans de nombreux centres en raison de son coût modique et de sa facilité d’obtention.

Le pertechnétate et l’iode 123 sont également utilisés en routine chez le nouveau-né et l’enfant, en adaptant les activités administrées.

Il n’y a pas d’allergie aux traceurs utilisés pour la scintigraphie, en particulier pas d’allergie à l’iode radioactif.

Les « allergies à l’iode » sont souvent des allergies aux produits de contraste utilisés en radiologie, qui sont par ailleurs iodés.

Par ailleurs, les masses d’iode radioactif utilisées sont de l’ordre du picogramme (pg) pour une scintigraphie à l’iode 123 et du microgramme (µg) pour une dose thérapeutique de 3,7 GBq d’iode 131 : elles sont donc négligeables par rapport au bilan iodé alimentaire normal, qui est de l’ordre de 100 µg/j et elles ne peuvent, en aucun cas, provoquer une surcharge iodée.

Chez la femme, il faut s’assurer de l’absence de grossesse, et faire la scintigraphie de préférence dans les 10 premiers jours du cycle.

2- Autres traceurs :

D’autres traceurs isotopiques sont utilisés.

Le thallium 201 (Tl 201) est utilisé en routine par certaines équipes pour tenter de prévoir la malignité des nodules thyroïdiens.

Des traceurs ont été étudiés dans le même but : le méthoxy-isobutylisonitrile (MIBI) marqué au Tc 99m, le tétrofosmine (1, 2-bi[bis (2- éthoxyéthyl) phosphino] éthane) marqué au Tc 99m.

Ces traceurs ne se sont pas montrés très performants dans le diagnostic de malignité des nodules thyroïdiens.

Ils auraient plus d’intérêt pour localiser d’éventuelles métastases ne fixant pas l’iode 131 :

– l’octréotide (analogue de la somatostatine) marqué à l’indium 111 a un certain intérêt dans la détection de métastases de cancer de la thyroïde, surtout le cancer médullaire ; il est également utilisé dans l’évaluation de l’évolutivité des ophtalmopathies basedowiennes ;

– le fluorodéoxyglucose (FDG) marqué au fluor 18 (émetteur de positons) se fixe dans les tissus en fonction de leur activité métabolique ; ce traceur paraît sensible dans la localisation des métastases de cancer thyroïdien ne fixant pas l’iode.

En revanche, la détection nécessitait, jusqu’à une date récente, un appareillage coûteux et rare (caméra à positons).

Actuellement, on peut utiliser une caméra double tête classique équipée d’un système de détection par coïncidence.

3- Appareillage :

* Scintigraphe à balayage :

C’est l’appareil le plus ancien. Son détecteur, mobile, se déplace audessus de la thyroïde, en explorant à chaque instant une surface réduite.

* Caméra à scintillation :

Son cristal explore en même temps toute sa surface.

Plusieurs collimateurs sont utilisés dans l’exploration thyroïdienne.

Le collimateur à trou unique (« pinhole » ou sténopé) est le plus utilisé.

Il donne une assez bonne résolution.

Cependant la thyroïde n’est pas représentée grandeur nature, et la projection conique entraîne une déformation de l’image qui rend le repérage anatomique délicat.

Le collimateur multicanal à trous parallèles, adapté aux basses énergies, a les avantages de la projection orthogonale et de la facilité du repérage des nodules, mais sa résolution est trop médiocre pour la thyroïde.

Le collimateur multicanal à trous parallèles, adapté aux hautes énergies, est indispensable pour l’étude corps entier des cancers thyroïdiens par l’iode 131.

* Tomographie par émission monophotonique :

Elle n’est pas passée en routine dans l’exploration thyroïdienne.

4- Résultats :

L’image scintigraphique normale montre deux lobes symétriques et homogènes, séparés par un isthme plus ou moins fixant.

Le tractus thyréoglosse est souvent visible, le plus souvent en position paramédiane droite.

5- Résultats pathologiques :

Les anomalies peuvent porter sur le volume, la morphologie, l’homogénéité, la topographie de la thyroïde.

La morphologie et l’homogénéité de la fixation peuvent être appréciées en comparaison aux données cliniques. Un goitre de topographie intrathoracique est appelé « goitre plongeant ».

Un foyer de fixation plus latéral que la thyroïde n’est pas une thyroïde ectopique, c’est, a priori, une métastase ganglionnaire d’un cancer thyroïdien.

* Nodules thyroïdiens :

Leur classification est scintigraphique dans la littérature médicale.

Selon l’intensité de leur fixation par rapport au parenchyme thyroïdien avoisinant, on distingue des nodules froids (hypofixants), chauds (hyperfixants), et isofixants.

Depuis les développements de l’échographie et de la cytoponction (échoguidée ou non), les modalités du bilan initial d’un nodule sont discutées dans la littérature.

La scintigraphie en particulier est remise en cause par certains auteurs.

Or, les nodules froids et les nodules chauds posent des problèmes très différents et ne relèvent pas de la même surveillance.

Il semble évident qu’un bilan initial complet, comportant une scintigraphie, menant à un diagnostic précis nodule chaud ou nodule froid est préférable.

De plus, il permet la prise en charge la moins coûteuse à long terme.

Les nodules froids, les plus fréquents des nodules, posent un des problèmes des plus difficiles, celui de leur éventuelle malignité.

Les nodules chauds peuvent être malins, mais seulement de façon exceptionnelle.

En pratique, ils posent seulement le problème de leur éventuelle toxicité.

Un nodule chaud en début d’évolution n’est pas toxique, mais seulement autonome : il ne s’accompagne donc pas d’une TSH abaissée.

Sur la scintigraphie, il est plus fixant que le parenchyme extranodulaire, qui reste visible.

Au cours de l’évolution, le passage à la toxicité devient de plus en plus probable, au moins dans la majorité des cas, avec 4 % de passage à la toxicité par an.

À la scintigraphie, le nodule toxique est typiquement seul fixant.

Une thyrotoxicose méconnue favorise à moyen terme les troubles du rythme cardiaque et les complications thromboemboliques.

Le diagnostic est souvent méconnu pendant des années, surtout chez l’homme, dont la thyroïde est moins accessible à l’examen clinique que la femme.

La morbidité et la mortalité d’une thyrotoxicose non traitée sont beaucoup plus importantes que celles d’un cancer thyroïdien différencié méconnu.

Il est donc essentiel de savoir si un nodule thyroïdien est chaud ou froid, même si la TSH est normale au moment du diagnostic initial, pour orienter la surveillance.

Le repérage anatomique du nodule et l’interprétation de la scintigraphie sont souvent difficiles.

Il faut tenir compte de l’épaisseur du nodule et du parenchyme thyroïdien extranodulaire.

* Intérêt de la scintigraphie dans les dysthyroïdies :

+ Hyperthyroïdie :

Seule la scintigraphie permet d’affirmer le diagnostic d’adénome toxique ou de goitre multinodulaire ancien partiellement autonomisé.

En revanche, la scintigraphie a peu d’intérêt dans une maladie de Basedow si le diagnostic est posé (anticorps antirécepteurs de la TSH présents, ophtalmopathie clinique) et si l’échographie montre une thyroïde homogène.

La scintigraphie montre une thyroïde très contrastée, homogène.

+ Hypothyroïdie :

Dans les hypothyroïdies acquises, la scintigraphie est indiquée pour certains auteurs dans le bilan des thyroïdites auto-immunes, et au cours de la surveillance, s’il apparaît un nodule supracentimétrique.

Dans le diagnostic étiologique des hypothyroïdies congénitales, la scintigraphie met facilement en évidence une ectopie ou une athyréose.

* Cas particulier de la surcharge iodée (SI) :

+ En l’absence de dysthyroïdie :

La clairance de l’iodure diminue pour adapter l’entrée de l’iodure.

L’iode radioactif est dilué dans l’iode de la surcharge (phénomène de dilution isotopique).

La scintigraphie, réalisée dans les conditions habituelles, peut être peu contrastée, voire blanche.

Pour obtenir quand même un bon contraste scintigraphique, il faut augmenter la dose traceuse d’iode radioactif et, éventuellement, prolonger le temps d’acquisition.

+ Surcharge iodée et hyperthyroïdie :

La scintigraphie seule permet de faire un diagnostic précis et donc de choisir le traitement le plus adapté. On distingue plusieurs situations :

– une pathologie thyroïdienne, le plus souvent une maladie de Basedow ou un adénome toxique, provoque l’hyperthyroïdie, et il s’y associe fortuitement une surcharge iodée ; la fixation et le contraste scintigraphique sont simplement abaissés par la SI ;

– il y a une pathologie thyroïdienne préalable de type autonome, en règle un goitre nodulaire ancien partiellement autonomisé ; l’hyperthyroïdie est induite ou facilitée par la SI (hyperthyroïdie induite par l’iode de type I).

La surcharge iodée est le plus souvent de l’amiodarone, parfois un autre produit iodé.

La scintigraphie est hétérogène : les zones autonomes fixent l’iode, les autres non.

La fixation globale de l’iode est basse mais non nulle ;

– il n’y a pas de pathologie thyroïdienne décelable, et l’hyperthyroïdie est provoquée par la SI (hyperthyroïdie induite par l’iode de type II).

L’amiodarone est le produit responsable dans la majorité des cas ; le début de l’hyperthyroïdie se situe le plus souvent dans les mois qui suivent le début du traitement par amiodarone, mais parfois très tôt (quelques jours) ou très tard (plusieurs années) ; le traitement peut aussi avoir été interrompu plusieurs mois avant le début de l’hyperthyroïdie.

La scintigraphie montre un contraste faible ou nul, la thyroïde étant très peu ou pas du tout visible.

La fixation de l’iode radioactif est très basse ou nulle.

Cela résulte de plusieurs facteurs : lésions cellulaires destructrices, effondrement de la TSH, dilution isotopique.

+ Surcharge iodée et hypothyroïdie :

La scintigraphie permet seule de faire la distinction entre hypothyroïdie induite par la SI et hypothyroïdie fortuitement associée à la SI.

– Hypothyroïdie induite par SI.

Elle est due à un trouble de l’organification de l’iodure.

La TSH étant élevée, l’iode radioactif entre dans les cellules thyroïdiennes en quantité, malgré la surcharge iodée.

La scintigraphie précoce montre un bon contraste malgré la SI.

Le test au perchlorate consiste à donner per os du perchlorate non radioactif, qui est capté par la cellule thyroïdienne comme l’iodure et déplace l’iode non organifié, qui ressort de la cellule : le contraste scintigraphique chute après perchlorate.

– Hypothyroïdie fortuitement associée à une SI.

La fixation et le contraste scintigraphique, déjà souvent bas dans une hypothyroïdie, sont encore diminués par le phénomène de dilution isotopique et la scintigraphie est très pâle, voire blanche.

+ Scintigraphie au thallium 201 :

Pour certains auteurs, un nodule froid sur la scintigraphie conventionnelle et chaud sur la scintigraphie réalisée au thallium 201 est souvent un cancer thyroïdien.

Notre expérience est plutôt décevante en ce domaine.

6- Scintigraphie du corps entier à l’iode 131 (I 131) :

Elle est pratiquée au cours du traitement du cancer thyroïdien différencié.

Elle a pour but de mettre en évidence les reliquats presque toujours présents au décours de la thyroïdectomie totale, et d’éventuelles métastases régionales ou à distance lorsqu’elles fixent l’iode radioactif.

L’I 131, grâce à l’énergie de son rayonnement gamma, permet la visualisation des métastases même si elles sont profondes.

Au décours de la thyroïdectomie totale, on peut faire une scintigraphie diagnostique avec une dose d’I 131 de 110 à 185 MBq (3 à 5 mCi), après 4 semaines sans prise de LT4.

Le plus souvent maintenant, on donne une dose ablative de 3,7 GBq d’I 131, pour détruire les reliquats présents dans presque tous les cas, et on fait la scintigraphie du corps entier quelques jours après.

L’interprétation de la scintigraphie corps entier doit tenir compte :

– de l’existence d’un transport actif de l’iodure au niveau des glandes salivaires et de l’estomac ;

– de l’élimination urinaire et colique de l’I 131 ;

– du métabolisme hépatique des hormones thyroïdiennes ;

– de l’élimination de l’I 131 par le lait (à éviter chez une femme qui allaite).

Une scintigraphie de contrôle est faite 6 mois après, 48 heures après la prise de 110 à 185 MBq (3 à 5 mCi) d’I 131, et après 4 semaines sans LT4.

On voit parfois des métastases ganglionnaires, pulmonaires ou osseuses, mieux visibles à 6 mois car seules fixantes, puisque les reliquats cervicaux initiaux ont disparu.

On donne éventuellement alors une nouvelle dose thérapeutique.

Ultérieurement, les scintigraphies du corps entier sont faites lorsque la thyroglobuline reste élevée ou se réélève après avoir été trouvée nulle.

La surveillance à long terme porte principalement sur la Tg, beaucoup plus sensible que la scintigraphie, et sur l’échographie cervicale, très performante quand elle est faite par des échographistes expérimentés.

L’arrêt de 4 semaines de la prise de LT4 peut être remplacé par des injections de TSH recombinante fabriquée par génie génétique, qui sont cependant onéreuses.

Lorsque des métastases à distance ne fixent pas ou plus l’I 131, on peut tenter d’induire leur redifférenciation et d’augmenter leur fixation de l’I 131 par de l’acide rétinoïque.

7- Scintigraphie thyroïdienne par fluorescence X :

Cette technique n’est que très peu utilisée car les appareils sont rares.

La scintigraphie montre la répartition de l’iode froid et la quantifie.

Elle est possible dans tous les cas, même lorsque la scintigraphie à l’iode radioactif est blanche.

B - FIXATION DE L’IODE RADIOACTIF :

La mesure de la fixation de l’iode radioactif permet de faire l’étude dosimétrique, en vue du traitement par l’iode 131 des hyperthyroïdies.

En diagnostic en revanche, hormis certains cas particuliers, tels que les maladies de Basedow de diagnostic incertain, (lorsqu’il n’y a pas d’ophtalmopathie ni d’anticorps antirécepteurs de la TSH) et les troubles de l’hormonogenèse, la fixation de l’iode a perdu beaucoup de son intérêt.

1- Appareillage :

La fixation est mesurée le plus souvent à l’aide d’un compteur gamma, ou à l’aide d’une caméra à scintillation équipée d’un collimateur parallèle.

2- Interprétation :

La fixation thyroïdienne représente le pourcentage de la dose traceuse d’iode radioactif qui est entré dans l’espace intrathyroïdien, iodure ou iode organifié.

La fixation dépend de plusieurs facteurs :

– le bilan iodé : en cas de surcharge iodée, la clairance thyroïdienne s’adapte et diminue, ainsi que la fixation ;

– le temps : la fixation monte progressivement jusqu’à 24 heures si l’organification est normale ;

– la stimulation thyroïdienne : en cas d’hyperstimulation thyroïdienne soit par la TSH, soit par des immunoglobulines stimulantes, le « turn-over » de l’iode est parfois accéléré.

3- Résultats :

La fixation thyroïdienne est habituellement en France de l’ordre de 10 à 25 % vers la 2e heure, et de 20 à 45 % à la 24e heure.

4- Étude dynamique de la fixation de l’iode à visée dosimétrique :

* Traitement de l’hyperthyroïdie par l’iode 131 :

On mesure la fixation à 24 ou 48 heures, puis à une ou deux reprises dans les 8 jours suivants.

On mesure ainsi la période thyroïdienne effective de l’iode 131 et la dose nécessaire pour délivrer l’irradiation désirée.

Le calcul se fait suivant la formule de Marinelli :

Act T (MBq) = DA(Gy).M(g)/0,042.Fix t0.Teff(j)

Où Act T est l’activité thérapeutique à administrer ; DA, la dose absorbée par la thyroïde souhaitée ; M, la masse de la thyroïde ; Fix t0, la fixation de l’iode extrapolée au temps 0 ; T eff, la période effective de l’iode dans la thyroïde.

La masse de la thyroïde peut être appréciée par l’échographie ; on assimile chaque lobe à un ellipsoïde de dimensions L, l et e ; le volume est V = 1/6.L.l.e

La masse peut aussi être estimée par planimétrie scintigraphique.

* Étude de la fixation de l’iode 131 dans les métastases de cancer :

On peut mesurer la fixation des métastases avec la caméra à scintillation, calculer la période effective et apprécier ainsi l’efficacité d’une dose thérapeutique de 3,7GBq (100 mCi), ou plus, d’iode 131.

Que pensez-vous de cet article ?

  Envoyer par mail Envoyer cette page à un ami  Imprimer Imprimer cette page

Nombre d'affichage de la page 5353







loading...
loading...

Copyright 2017 © Medix.free.fr - Encyclopédie médicale Medix